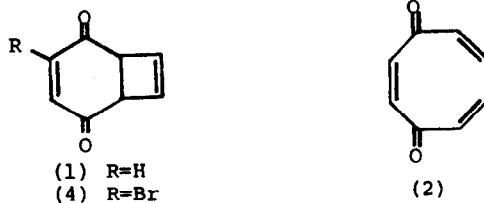


THERMOLYSIS OF BICYCLO[4.2.0]OCTA-3,7-DIENE-2,5-DIONES

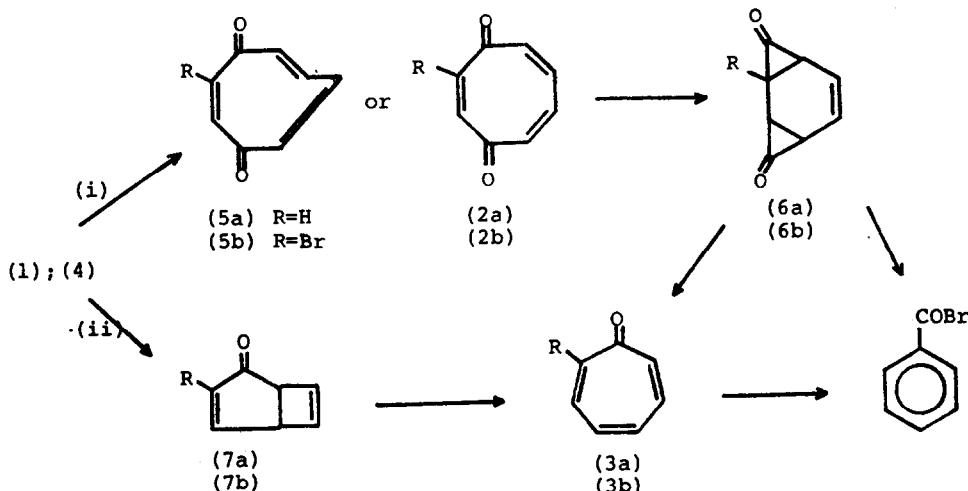

Yasutaka KAYAMA, Masaji ODA, and Yoshio KITAHARA*

Department of Chemistry, Faculty of Science, Tohoku University

Sendai 980, Japan

(Received in Japan 6 July 1974; received in UK for publication 25 July 1974)

We have recently reported the synthesis of bicyclo[4.2.0]octa-3,7-diene-2,5-dione (1)¹ which is the valence bond isomer of the interesting but yet unknown cyclooctatriene-1,4-dione (cyclooctatetraeno-p-quinone) (2). As a good number of thermal transformation of cyclobutenes to 1,3-dienes have been known², it was expected that thermolysis of (1) would produce (2). We here report the results of thermolysis of (1) and its monobromo-derivative (4), 3-bromobicyclo[4.2.0]octa-3,7-diene-2,5-dione.



Compound (1) was quite stable up to 350°C on flash thermolysis³ at 0.2 mm Hg. At 500°C, however, it gave, besides the unchanged material (8%), tropone (3a) (49%) and a trace amount of an unstable ketonic compound⁴ which is not yet identified. The result is in agreement with that (1) shows a strong peak at m/e 106 (M-CO) in the mass spectrum¹.

Thermolysis of (4)⁵ at the same condition adopted for (1) gave benzoyl bromide (22%) as the only isolable product.

As for the mechanism leading to tropone, two possible paths can be considered; (i) (1) at first undergoes ring opening to trans-cyclooctatriene-1,4-dione (5) or (2) which subsequently undergoes intramolecular Diels-Alder reaction to give the biscyclopropanone derivative (6) and then is decarbonylated; (ii) (1) is at first decarbonylated to bicyclo[3.2.0]hepta-3,6-diene-2-one (7) which

subsequently, as already known⁶, undergoes ring opening. Since, in our unpublished results, bicyclo[4.2.0]octa-7-ene-2,5-dione, the 3,4-dihydro derivative of (1), gives the expected ring-opened product, cycloocta-2,4-diene-1,6-dione, in good yield⁷, the first path seems to be plausible. Benzoyl bromide may have been formed from (6b) or 2-bromotropone (3b); the latter compound has been reported to give it on thermolysis at 400-500°C⁸.

Notes and References

- * To whom all correspondences should be addressed.
- 1) M. Oda, Y. Kayama, and Y. Kitahara, *Tetrahedron Lett.*, 2019 (1974).
- 2) H. M. Frey "Advances in Physical Organic Chemistry" pp 147-193, 1966, Academic Press, London and New York, and references cited therein.
- 3) The thermolyses were carried out by passing the vapourized substrates through a pre-heated pyrex tube packed with quartz tips in vacuum.
- 4) This compound showed a carbonyl absorption at 1710 cm^{-1} and changed into an inseparable mixture (tlc) on standing.
- 5) This compound was prepared from (1) by bromination (1 equiv.) at -20°C in CCl_4 and subsequent treatment with NET_3 in 89% yield; ν_{max} (neat)=1680, 1665, 1560 cm^{-1} ; δ (CDCl_3)=7.18 (1H,d,J=0.9 Hz), 6.42(2H,s), 4.05(1H,d,3.4 Hz), 3.90 ppm (1H,dd,3.4 and 0.9 Hz).
- 6) P. R. Story and S. R. Fahrenholz, *J. Amer. Chem. Soc.*, 87, 1623 (1965). Reportedly, (4) undergoes ring opening to tropone at 350°C .
- 7) To be reported elsewhere.
- 8) T. Mukai, T. Nakazawa, and K. Okayama, *Tetrahedron Lett.*, 1695 (1968).